Challenges and priorities for soil survey – the Global Soil Map - Setting a world scene - A soils response a global soil information system - What it needs to look like - Getting there - Briefly an Australian picture Saul Eslake's presentation to CFO Forum Melbourne Feb 2008 "China & India in the World Economy: Implications for Australia" Rice-Wheat Consortium for Indo-Gangetic Plains http://www.rwc.cgiar.org/rwc/table.htm #### Supply and Demand Projections for Rice and Wheat, South Asia | Country | Population
1990 ^a | 1990-2020
Growth
Rate ^b | 2020 Rice
Production | 2020 Rice
Demand | 2020
Rice
Balance | 2020
Wheat
Production | 2020
Wheat
Demand | 2020
Wheat
Balance | |------------|---------------------------------|--|-------------------------|---------------------|-------------------------|-----------------------------|-------------------------|--------------------------| | Bangladesh | 106.70 | 1.8 | 38,071.00 | 38,024.00 | (132.00) | 1,580.00 | 6,031.00 | (4,450.00) | | India | 849.50 | 1.7 | 145,777.00 | 144,792.00 | 985.00 | 96,384.00 | 95,617.00 | 766.00 | | Nepal | 18.90 | 1.8 | 3,814.00 | 2,407.00 | 860.00 | 1,401.00 | 1,357.00 | 44.00 | | Pakistan | 112.40 | 2.8 | 6,207.00 | 5,309.00 | 898 00 | 2 7,463.00 | 42,914.00 | (15 451 00) | | South Asia | 1,147.70 | 1.8 | 197,617.00 | 197,588.00 | 29.00 | 126,817.00 | 148,121.00 | (21,303.00) | ^a In millions; ^b in Percentage Source: Hobbs and Morris, 1996 Close ## A world of new challenges and constraints - Developed world: - 765m ha cultivable land (268m with significant limitations) 595m used - Developing world: - 1.8b ha cultivable land (360m with significant limitations) 900m used - Where is the unused land? - sub-Saharan Africa; South America - 770m ha in forests - and, increasingly, cultivable land used for biofuels - "Intensification of agriculture will be the most likely means to meet food needs for a world population of some nine billion people in 2050" From Global Agro-ecological Assessment for Agriculture in the 21st Century – Fischer et al. 2001 ## Indo-gangetic plain - Soil fertility declines well recorded: - declining trend in productivity even with the application of N, P, and K fertilizers, and the use of modern intensive farming - micro-nutrient deficiencies started appearing, zinc deficiency widespread - Soil salinity and water logging already affects large parts of the IGP in India and Pakistan and to some extent in Bangladesh - Climate change: Changes in temperature and in precipitation patterns and amount will influence soil water content, run-off and erosion, workability, salinisation, biodiversity, and organic carbon and nitrogen content. - P.K. Aggarwal, P.K. Joshi, J.S.I. Ingram and R.K. Gupta, Adapting food systems of the Indo-Gangetic plains to global environmental change: key information needs to improve policy formulation, Environmental Science & Policy Volume 7, Issue 6, , December 2004, Pages 487-498. ## 33 rice—wheat long term experiments in the Indo-Gangetic Plains (IGP) of South Asia, non-IGP in India, and China - extent of yield stagnation or decline - yields of rice and wheat stagnated in 72 and 85% of the LTE, respectively, while 22 and 6% of the LTE showed a significant (P<0.05) declining trend for rice and wheat yields, respectively. - rice yields are declining more rapidly than wheat. - causes mostly location-specific: - depletion of soil K - depletion of soil C, N and Zn and reduced availability of P - delays in planting, decreases in solar radiation and increases in minimum temperatures. - J. K. Ladha, D. Dawe, H. Pathak, A. T. Padre, R. L. Yadav, Bijay Singh, Yadvinder Singh, Y. Singh, P. Singh, A. L. Kundu, R. Sakal, N. Ram, A. P. Regmi, S. K. Gami, A. L. Bhandari, R. Amin, C. R. Yadav, E. M. Bhattarai, S. Das, H. P. Aggarwal, R. K. Gupta and P. R. Hobbs, How extensive are yield declines in long-term rice-wheat experiments in Asia?, Field Crops Research Volume 81, Issues 2-3, , 20 February 2003, Pages 159-180. #### Global interactions - Food imperative - Land quality and availability - Climate change and variability - Energy / nutrient costs - Soil condition trends - Institutional decline - Fragmentation / history ## And – new solutions to the challenge - ICT opportunities - DSM breakthroughs - Sensing remote, proximal - Carbon the new currency - Awareness need for a new or renewed 'green revolution' (eg. the Alliance for a Green Revolution in Africa: http://www.agraalliance.org/) ## And why are soil scientists important in this? - The soil is back in centre stage - Losses in carbon, nutrients; decline in pH, loss of topsoil, salinisation – have large, uncertain and increasing costs - New policies / programs need better scientific input to reduce costs / uncertainties - Carbon, nitrogen and methane now part of a global greenhouse account – in reality and soon in policy? - New opportunities and capabilities - Need to mobilise and focus ## The solution – a global soil information system? • The right soil information in the right place – integrated into systems answers #### Right information? - Understanding of soil processes modelled - Drivers of change in soil processes - · Land use management - Climate change and variability - Scope for beneficial and sustainable change - The processes which impact people and environment now and in the future? - Measuring / monitoring the processes - The key parameters or - Surrogates for the key parameters with known inference capacity - Measured / predicted uncertainty #### Right place - The parameters needed by the decisions - Has to be models of various types - The other components / parameters needed for the decisions - Resolution to match management scale - Everywhere management / impact is an issue - Measured / predicted uncertainty #### Systems - To feed into integrated systems responses - Across biophysical elements - Including social and economic dimensions of the impact and the solutions - About partnerships, communication and shared progress ## The underpinnings - A soil information system in a grid - Rapid quantitative measurement - Integrated systems models ## Global digital map of the world - Aim: an information key to soils drivers to: - enhanced food production and poverty reduction, - soil erosion reduction and - greenhouse gas management. http://www.globalsoilmap.net/. ### Vision - Grid at 90 x 90m - Content: primary functional properties of soils - Timing and extent: 80 percent of the world within 5 years - freely available, web-accessible and widely distributed - an aid to decisions in real time deriving specific management recommendations on enhanced food production, reduced erosion, reduced greenhouse gas emissions and regenerated degraded lands ## To produce: - The key components allowing forecasts on threats to soil function and opportunities for improvement – online - robust understanding of the key functional components and responsiveness of the world's soils - new methods for digital soil mapping and online delivery - quantification of soil organic carbon and nutrient dynamics to meet the emerging greenhouse requirements - influence into national policies, programs and assessments especially around food production, avoidance and/or alleviation of land degradation and the interaction with climate policies and targets Getting there ## The end point - Information to address these kind of interactions: - Economics, ecology and social health - Food production energy degradation - Climate change mitigation sequestration productivity - . . . - Spatial and temporal interactions a common thread - ie. some form of modelling - Data and models which give: - capacity to explore options - predict the outcomes of evolving or new land management systems across crop and land management systems, - capacity to monitor of progress and condition and trend of the soil resource ### The data need - Data to match the scale of measurement, the scale of the relevant process, the scale of landscape / land system management - For each grid component: - An estimate of the key parameter - An uncertainty value - The key parameters might include: | Attribute | Significance | | | | | | |--|--|--|--|--|--|--| | Texture | Affects most che | hemical and physical properties. Indicates some | | | | | | | processes or sep torreation | | | | | | | | Clay content | As for texture | | | | | | | Coarse fragments | Affects water storage and nutrient supply | | | | | | ility. Necessary for | Bulk density | Suitability for root growth. Guide to permeat | | | | | | ic | | converting gravimetric estimates to volumetr | | | | | | ical reactions. Indicates | pH | Controls nutrient availability and many chem | | | | | | esical Tenthic | Organic Alban | dentide government levels. Indicator of seri-ph | | | | | | | eprise of the control of the | Sande de l'activité l'activ | | | | | | 3 | svers, that it was it substituted. | avarencespacity, storagest ac acity and neutriens, and | | | | | | | egalili | and an expensive produces of all all and an analysis and | | | | | | X 35 | Σίσμα <u>.</u> | The disconstant of the continuous states th | | | | | | |)-1 5MPa | Used to calculate water availability to plants and | | | | | | 1200 PART 1997 PART STANDARD AND STANDARD AND STANDARD ST | lant available water capacity. | Primary control on biological productivity and se | | | | | | | sat | Indicates likelihood of surface runoff and erosion | | | | | | Sa Carrier Constitution Constitution | | potential for water logging. Measure of drainage | | | | | | s Agegree 60 applicants - E | Jeotras Leondrotis ity. | Processor of nationally beautiful to redicate of | | | | | | erispersion and | Photopate stability | tione in <u>soi physical</u> ferminy. Potental for via | | | | | | | | adverse impacts onewater quality | | | | | | weathering. | Sting of exchangeable bases _ | Childe to nutrient levels. Indicates the degree of | | | | | | weathering. Guide to | CEC | Guide to instrient levels. Indicates the degree of | | | | | | 79,7% | | clay mineral cy (when used with clay content) | | | | | | Toperties ESP | | ■fudicator of dispersive clavs and poor soil physical p | | | | | | ASC | 4.1 to 1.2 to 1.4 1. | Shorthand for communication across Australia | | | | | | 1.04-m 12/2 | at Group) | Charthand for a communication in formationally | | | | | | undwater Sub | strate type— | Shorthand fer remainmination interpetionally. Control on soil formation, landscape hydrology, gro | | | | | | anawatta 2000 | ouraue-ts-pt- | movement quitien(s and solutes | | | | | | er Sidett | ato pormoability | Affinite land-gone by Aral one and overnound in the menant | | | | | | A PACASTO DE S | - Company of the Comp | The same of sa | | | | | CSIRO ## Multiple pathways - For most landscapes and for some time historic soil survey data will feed the grid - Process will be survey and site specific - The end members: - Little effective information transfer by analogy, expert opinion, correlation with terrain / climate / geological information - New survey using digital soil mapping approaches - Requiring: - A fresh approach to a data model - Emphasis on pedo-transfer / inference techniques - (where possible) supplemental, strategic sampling and measurement - Use of remote and proximal sensing, terrain data . . . # Developing a data model – starting from soil survey concepts - conceptual models of soil– landscape relationships - Captured in a formularised way - Descriptive soil sites - Analytical sites - Polygon map - Map legend - Survey reports - And important assumptions: - Co-incident attributes between class and polygon - Co-variance of important attributes ## Through model / system concepts #### Include: point-based one-dimensional models for water balances, forest growth and cropping systems (e.g. APSIM – http://www.apsim.info/apsim/what -is-apsim.asp) distributed sediment and water quality models eg. E2 model (Argent et al. 2005) and SEDNET (Prosser et al. 2001). #### The soil data: complex parameters for water storage, nutrient dynamics, soil erosion, sediment transport and the connections between soils, hillslopes and surface or groundwater. ### To a data model which: - Fits the population of soils - Generalises in parameters, depths / layers, volumes to allow comparison across soils, space and time - Builds from historic data (vector, traditional data types and structures) - Fits with a digital, raster expression of soil data - Allows growth and change ## Soil depth – a case of ancillary data with an explicit conceptual model ## A case study: soil modelling for salinity management - The models groundwater / surface water interactions; crop performance - The attributes soil EC, soil profile drainage, soil texture - Inadequate soil survey mapping and sites: - Supplementary site collection for spatial model building - Validation data set collection - Spatial data modelling recursive tree approaches based on soil landscape concepts (SCORPAN). Key components: - Gamma radiometrics lithology / parent material - DEM relief ## Strategic improvement in soil survey data | Variable | Reported accuracies initial models (Section 3) | Validation accuracies initial models (Section 3) | Accuracies of final models | | | |--------------|--|--|----------------------------|--|--| | Drainage | 45 | 33 | 42 | | | | Permeability | 73 | 3 | | | | | ASC order | 54 | 14 | 46 | | | | A texture | 32 | 31 | 36 | | | | B texture | 47 | 56 | 54 | | | | EC at 60cm | 34 | 41 | 33 | | | ## **Proximal Soil Sensing** | | Radiometric | | | | | | | | |---|-------------|-------|-----|----------------------|------------------|-----|----------------------|-----------------| | | | | | | | | | | | Soil property | γ-rays | X-ray | DRS | Microwave
/ Radar | Acoustic / Radio | EMI | Electro-
chemical | Mecha-
nical | | available water | | X | X | X | X | X | | | | carbon | | | X | | | | | | | BD / compaction | X | | | X | X | | | X | | pH, BC, LR | | | X | | | | X | | | major nutrients N, P, K | | | | | | | X | | | minor nutrients e.g. B,
Cu, Mn, Zn, Mo. etc. | | X | | | | | X | | | clay minerals | X | X | X | | | | | | | elements e.g. Al, Fe, Si, Mg, Ca, K, etc. | X | X | | | | | X | | | clay, silt, sand | X | | X | | X | X | | | | CEC | | | X | | | | | | | salinity | | | | | | X | X | | | heavy metals | | X | X | | | | | | ## And the new world? - The components of digital soil mapping: - Sampling to support statistical inference eg. latin hypercube designs - Prediction and inference - Statistical modelling and environmental correlation - Attribute inference eg. pedotransfer functions - A set of approaches which populate the global soil map directly - The norm by ??? ## We are on the way - Melinda and Bill Gates Foundation involvement - Initial work in US, Europe and Oceania - Governance / organisation structure evolving - Next steps in Utah, Sept/Oct And to finish – some Australian news: ## The Australian soil research / survey structure - States have land management responsibilities and the (declining) soil survey programs, some variable soil research capacity - CSIRO national research facility; reinvesting after a decline in investment - Provides research support to survey and related programs and to Fed programs - Underpins the national soil information system - University research small, in clusters, declining in many areas - Australian Collaborative Land Evaluation Program led by CSIRO includes main players and guides the development of standards, new approaches through National Coordinating Committee on Soil and Terrain - Australian focus - A need to rebuild after disinvestment and fragmentation - And to respond to the new needs and opportunities - CSIRO response the Theme called "Managing Australia's Soil and Landscape Assets – MASaLA" ## The MASaLA connections ### The Goal ## To improve the management of Australia's soils and landscapes by - providing decision makers with definitive seasonal forecasts of key processes (primarily the dynamics of soil carbon, water, nutrients and sediment) affecting or threatening the function of Australian soils - at a minimum resolution of 50 m across the nation by 2015. #### Mike Grundy Phone: 07 3214 2909 Email: mike.grundy@csiro.au Web: www.csiro.au/clw ## Thank you #### **Contact Us** Phone: 1300 363 400 or +61 3 9545 2176 Email: enquiries@csiro.au Web: www.csiro.au ## 19th World Congress of Soil Science Soil solutions for a changing world BRISBANE AUSTRALIA 1 - 6 August 2010 ## www.19wcss.org.au Please join us in Brisbane, Australia in August 2010 for the 19th World Congress of Soil Science. #### For information on: - * Registration - * Call for Papers - * Congress program - * Accommodation options - * Visas to Australia - General conference information **Hosted By**